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Abstract. The rigorous difference equations for the elements of any order of transfer matrices
of coupled waves and the renormalization relations for their recursion coefficients under
homogeneous and inhomogeneous rescaling are obtained. Incidentally, the generalization of
Abelés theorem to arbitrary-dimensional square matrix formulae are deduced.

1. Introduction

The problems on steady states in the multilayered linear mediums are often reduced to
solving a linear non-autonomous system of ordinary differential equations [1–3]

dΨ
dx

= A(x)Ψ (1)

whereA(x) is anN×N matrix andΨ = col(ψ1, ψ2, . . . , ψN) is the column ofN arguments.
In fact, there are the parametric resonance problems, in which the elements of the dynamical
matrix A(x) appear as variable parameters [2]. For example, the special case ofN = 2,
when

A(x) =
(

0 1
k2ε(x) 0

)
Ψ =

(
ψ

ψ ′

)
(2)

whereψ ′ = dψ/dx, corresponds to the Sturm–Liouville problem and may describe the
propagation of a plane electromagnetic wave with the wavenumberk = ω/c and frequency
ω in the medium with a variable dielectric permeabilityε(x) [5], or a Schr̈odinger equation
whenk2ε(x) = (2m/h̄2)(E−U(x)), whereE is the energy of the particle,U(x) the potential
[4] and so on.

WhenN > 2, we have a multicomponent wave equation which describes a system of
coupled waves of different physical nature [3, 6]. Thus, the case ofN = 4 may correspond
to equations of polariton theory, the magnetospring, spin-photon waves [7] etc; in particular,
to the Bogoliubov–de Gennes [8] equations in superconductivity when

A(x) =


0 1 0 0

−(2m/h̄2)(E − U(x)+ µ) 0 −(2m/h̄2)1(x) 0
0 0 0 1

(2m/h̄2)1∗(x) 0 (2m/h̄2)(E + U(x)− µ) 0

 Ψ =


u

u′

v

v′


(3)
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whereµ is the Fermi energy,U(x) the lattice potential, and1(x) the pair potential. The
wave equations for particles in a magnetic field with simple orientation and also gauging
may often be reduced to form (1), when we obtain a dependence on vector-potential terms
in the matrixA(x) on and off the diagonal. The caseN = 4 is also the one-dimensional
Dirac equation, whenΨ is a bispinor and

A(x) = −i{α̂−1[(E − e8(x))I − βm] + eA(x)I}x

is a matrix along the momentum componentpx = i∂x , 8(x) is a scalar,A(x) the vector
potential, α̂, β the Dirac matrices,I the unit matrix, andc = h̄ = 1 [9]. It should be
remarked that the potentials are often determined from a self-consistent procedure which
makes the wave problem nonlinear. This concerns particularly the potential1(x) in the
BCS model of superconductivity or fields in quantum electrodynamics. But, so far as the
procedure of self-consistency includes sums on many states, then for the one-particle spectral
problems the potentials may be treated as external and pre-assigned an average.

One usually employs the Floke–Liapunov (Bloch) theorem [2] for investigation
of questions concerning zones of stability, localization, and asymptotic behaviour of
wavefunctions in multilayered systems with periodicA(x) matrices. However, in
multilayered systems a rigorous periodicity is often absent, for example in systems with an
accidental or non-accidental unperiodic potential profile [4, 10, 11], in multilayered systems
in external fields, and in current states of superconducting superlattices where the modulus
of the pair potential is periodic but not the phase [8]. The numerical analysis on the basis
of the tight binding approximation is common for modelling such systems [10, 12, 13].
The transfer-matrix (dynamical mapping) technique [3, 13] is one of the formally rigorous
convenient methods. Most works use this technique for the case ofN = 2, with a binomial
recurrence procedure and a peculiar role tridiagonal matrices [14]. On the other hand, it
is common knowledge that for any linear differential equation of orderN the equivalent
rigorous difference equation which connects the values of the function inN + 1 discrete
points (equation (5) below) is constructed. We can express the coefficients of the difference
equation in terms of the one step by these point transfer-matrix elements. For example, this
type of expression for the Schrödinger equation was examined in [15].

The main aim of the present paper is the construction of a rigorous analytic algorithm,
generalizing this method to equations of form (1) of order higher than two, provided that the
solutions of the equation for the transfer matrix are known on a sequence ofx-axis intervals.
The differential equation (1) is replaced by the equation for the transfer matrix and then
by the rigorous difference Poincaré mapping. Constraints such as tight or weak binding
are unnecessary. Our consideration accepts any boundary conditions as asymptotically
free moving waves, scattered by a system, so we have immobile standing waves in the
localization problems. Constructions such as a ‘segmented’ potential that has constant value
regions with quasi-free motion exponential solutions [16] or other types [17] of solutions
are not essential. In scattering problems, knowledge of the transfer matrix allows one to
find the reflection and transmission coefficients [16] and to construct the scattering matrix
[6, 18] for given potentials. An important point is that forN > 2 we may consider the
effects of space modulation not only on the external potentials (fundamental frequencies)
for different waves, but also on the coupling parameters, such as the pair potential1(x) in
(3) (non-diagonal effects). This modulation appears in many physical effects, such as in the
mixing of modes, the splitting and repulsion of different spectrum branches near degeneracy
points [7], in the existence of directed wave currents in the states of a discrete spectrum
(the Andreev’s states in Josephson SNS junctions [8]) and a good many others.
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The elements of the transfer matrix satisfy almost the same differential and difference
equations as the wavefunction. The difference equations for the elements of the
transfer matrix and the renormalization relations for their coefficients of recursion under
homogeneous and non-homogeneous changing of the step scale are obtained below. We
have to emphasize the important role of these recurrent coefficients, because they make
up the hierarchy of polynomials possessing some similarity properties. For different
concrete systems and models of potentials, one may then search for the renormgroup
asymptotic behaviour of the wavefunctions and spectra, especially near the fixed points
of commensurability of the potentials space periodicity formation [13, 19].

The algebraic formulae for the matrix elements, being derived by a generalization of the
well known two-dimensional case, are not so far evident. In this connection, we deduce some
new interesting minor properties of Toeplitz(N + 1)-diagonal band matrices in Hessenberg
form [21, 23].We obtain incidentally the formulae which are a generalization of the widely
used Abeĺes theorem [3, 5, 20] to the arbitrary power of any dimensional square matrix
by using polynomials of many arguments generalizing the Chebyshev polynomials. Such a
generalization of the theorem should be very helpful in the analysis of complicated processes
of coupled wave propagation through multilayered periodical media.

2. The transfer matrix

The set of equations (1) is equivalent to one differential equation ofN th order with variable
coefficients

ψ(N) + a1ψ
(N−1) + . . .+ aN−1ψ

′ + aNψ = 0. (4)

If ψi(x) are the known linear independent solutions of (4), then the arbitrary solution
ψ(x)may be specified by its valuesψ(xj ) atN points,xj , (the initial or boundary conditions)
(i, j = 1, 2, . . . , N),

ψ(x) = 1

V (x1, x2, . . . , xN)

N∑
j=1

V (x1, . . . , xj−1, x, xj+1, . . . , xN)ψ(xj ) (5)

V (x1, x2, . . . , xN) = det{ψi(xj )} =

∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) . . . ψN(x1)

ψ1(x2) ψ2(x2) . . . ψN(x2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ1(xN) ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣ (6)

but, conveniently, to set the values of the initial conditions at one pointx0 = 0 using the
derivativesΨ(0) = col(ψ(0), ψ ′(0), . . . , ψ(N−1)(0)), we have

Ψ(x) = MxΨ(0) Ψ(x) = col(ψ(x), ψ ′(x), . . . , ψ(N−1)(x)) (7)

where Mx = {Mij (x)} (i, j = 1, 2, . . . , N) is the matrix of transfer fromx0 to x.
Moreover, in the representation (7) the elements of the first rowM1j give the required
solution

ψ(x) =
N∑
j=1

M1j (x)ψ
(j−1)(0) (8)

and take the form

M1j = Wj

W0
(9)
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whereW0 is the value atx = x0 of the Wronskian

W(x) = det{ψ(j−1)
i (x)} =

∣∣∣∣∣∣∣
ψ1(x) ψ2(x) . . . ψN(x)

ψ1
′(x) ψ2

′(x) . . . ψN
′(x)

· · · · · · · · · · · ·
ψ
(N−1)
1 (x) ψ

(N−1)
2 (x) . . . ψ

(N−1)
N (x)

∣∣∣∣∣∣∣ (10)

andWj is found fromW0 by replacing itsj -row elements withψ1(x), ψ2(x), . . . , ψ(N).
The elements of other transfer-matrix rows in the representation (7) are given by

Mij = d(i−1)M1j

dx(i−1)
i = 2, . . . , N (11)

e.g.Mij is found fromM1j by replacing functionsψk(x) (k = 1, . . . , N) in the j -row of
theWj functions by their derivativesψ(i)

k (x).
It follows from the Liouville–Jacobi theorem [1] for the systems with SpA = 0 (that

is a1 = 0) that the Wronskian isx-independent,W = W0, and the transfer matrix is
unimodular:

detMx = 1. (12)

With the help of a non-singular linear transformationU = U (x) we can go from (7) to
any other representation

Ψ̃(x) = UΨ(x) Ã(x) = UA(x)U−1 −U dU−1

dx
Ψ̃(x) = col(ψ̃1(x), . . . , ψ̃N(x)) (13)

Ψ̃(x) = M̃xΨ̃(0) M̃x = UMxU
−1 (14)

where the new transfer matrix̃Mx has the same determinant and eigenvaluesλx asMx . One
reduces the stability analysis to study the behaviour ofλx with changing energy or other
parameters.

We do not render this concrete representation any further, so by substituting (7) or (13)
and (14) into (1) it is easy to see that the initial set ofN equations (1) is replaced in the
transfer matrix method by the set ofN2 equations for the elements of the matrix,

dMx

dx
= A(x)Mx or

d(Mx)ij

dx
= (A(x)Mx)ij (15)

with the initial condition

M0 = I or (M0)ij = δij =
{

1 i = j

0, i 6= j .
(16)

There are certainlyN(N − 1) relations of type (11) between the elementsMij . The
return to the concrete movement wavefunction is given by (7) or (14),

Ψ(x) = MxΨ(0) (17)

whereΨ(0) is the system of the boundary conditions. We found the spectrum from the
second boundary condition at the pointx = xL:

Ψ(xL) = MLΨ(0). (18)

The transfer matrix role resembles the role of the Green function that satisfies the non-
homogeneous dynamical equation similar to the input equation but with the point source
initial condition. In contrast to the Green’s function equation, the equation for the transfer
matrix (15) is homogeneous and does not contain a singular point source which plays the
role of the diagonal initial condition (16).
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In the following sections we shall show how the solutions of equations (15) may
be written and analysed with the help of the determinants of(N + 1)-diagonal matrices.
Moreover, it automates the obtaining of coefficients in the recurrent formulae of type (5),
which is the foundation of the roughening procedure (finding of the envelope function) for
investigation of localization. The derivable formulae should be useful for the description of
many other physical characteristics in parametric wave processes.

3. The recurrent procedure

Let us divide the segment [x0, x] by the pointsx1, x2, . . . , xn, . . . ; assume that the problem
(15), (16) is solved on each half-interval [xn−1, xn] andTn is the one-step matrix of transfer
from xn−1 to xn derived in accordance with (9) and (11) or other formulae. Then for the
transfer matrixMn from x0 to xn evidently

Mn = TnMn−1 M0 = T0 = I (19)

gives the basis for the recurrence procedure for the computation of everyN2 elements
(Mn)ik of Mn via the elements of the one-step matricesTn. Since

(Mn)ik = (Tn)ii(Mn−1)ik +
N∑
j=1
j 6=i

(Tn)ij (Mn−1)jk (20)

and the element(Mn−1)ik is contained under the sum in the expressions of type (20) for the
otherk-columnMn elements, by takingN of these expressions for everyn, n− 1, . . . , n−
N + 1 steps undern > N we get a system ofN2 equations from whichN2 − 1 variables
(Mn)jk (j 6= i) may be excluded. The last action is simple to perform by equating to zero
an augmented determinant of the received system ofN2 equations. The linear relation thus
obtained connectsN + 1 elements(Mn)ik, (Mn−1)ik, . . . , (Mn−N)ik of the same type(ik)
on the consecutive steps

(Mn)ik =
N∑
l=1

(−1)l+1α(i)
(n)
l (Mn−l)ik (21)

which is the required recurrence relation. The coefficientsα(i)
(n)
l are expressed over the

elements ofN consecutive one-step matricesTn (see the appendix, formula (A.11)). For
n < N , i.e. the elements of the leadingN − 1 matricesMn, we need to compute with the
help of (19) by direct matrix multiplication

Mn =
n∏

p=1

Tp. (22)

The complete recursion is formed on theN th step. Then we may represent result (21)
via the elements ofN − 1 leading matrices(Ml)ik (l = 1, 2, . . . , N − 1) and the previous
recurrence coefficients (omitting its row indexi for brevity) in a form of the determinant
of the (N + 1)-diagonaln× n matrix

(Mn)ik =
∣∣∣∣ (M(N))ik R

L 1

∣∣∣∣ (23)
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where forN > 2 in the left upper corner there is a block which is the two-diagonal matrix
of (N − 1)× (N − 1) dimensionality,

(M(N))ik =



(M1)ik δik
(M2)ik
(M1)ik

1

(M3)ik
(M2)ik

1

. . .
. . .

(MN−2)ik
(MN−3)ik

1

0 (MN−1)ik
(MN−2)ik


(24)

with the rest of the elements being zero. Block∆ is the (N + 1)-diagonal(n−N + 1)×
(n−N + 1) matrix

1 =



α
(N)

1 1

α
(N+1)
2 α

(N+1)
1 1

α
(N+2)
3 α

(N+2)
2 α

(N+2)
1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α
(2N−1)
N α

(2N−1)
N−1 . . . α

(2N−1)
1 1

α
(2N)
N α

(2N)
N−1 . . . α

(2N)
1 1

. . .
. . . . . .

. . .
. . .

α
(n−1)
N α

(n−1)
N−1 . . . α

(n−1)
1 1

α
(n)
N α

(n)

N−1 . . . α
(n)

1



. (24′)

The rectangular blockR with a single non-zero element equal to unity in its left lower
corner and blockL with non-zero elements in its right upper triangle are

R =
(

1

)
L =



α
(N)
N α

(N)

N−1 α
(N)

N−2 . . . α
(N)

2

α
(N+1)
N α

(N+1)
N−1 . . . α

(N+1)
3

α
(N+2)
N . . . α

(N+2)
4

. . . . . .

α
(2N−2)
N

0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


. (24′′)

For N = 1, (M(1))ik = 1, and forN = 2, (M(2))ik = (M1)ik and δik occurs inR
instead of unity.

It should be noted that the results (23) and (24) include the operation of division on
the elements(Tn)ij which may be equal to zero. But these singularities are removable
by expanding the determinants along the adjacent rows containing such elements in the
denominators and in the numerators as well. Besides we may remove any zeros of(Tn)ij
by the variation of the size ofxn steps.

In the important case of the periodic system, if the step is equal to the period of theA(x)
matrix andTn = T is on a period transfer matrix (monodromy matrix [2]) thenα(n)l = αl
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are identical along each diagonal and

Mn = Tn
(Ml)ik

(Ml−1)ik
= (T l)ik

(T l−1)ik
(25)

in accordance with the well known Sylvester formula [22] the consequence of which is the
conclusion (Abeĺes [20]) of the fact that the integer powers ofN×N matrix are representable
by its matrix polynomial ofN − 1 power (see section 6).

One can see from the derivation that the coefficientsα(i)
(n)
l in the recurrence formula

(21) are independent of the column indexk, i.e. they are equal for all elements(Mn)ik in
the i-row of the transfer matrix. So in accordance with (17), that is

ψi(xn) =
N∑
k=1

(Mn)ikψk(0) (26)

the sameα(i)(n)l are the recursion coefficients in (5) for a wavefunctionψi from the Ψ
column

ψi(xn) =
N∑
l=1

(−1)l+1α(i)
(n)
l ψi(xn−l). (27)

We emphasize that the choice of the node points here is arbitrary and all expressions
up to (27) are rigorous. In the case of non-unimodular matricesTn andMn we may always
pass to unimodular ones(T (0)n )ik and(M (0)

n )ik by the norming replacement

(Tn)ik = (detTn)1/N(T (0)n )ik (Mn)ik =
n∏
j=1

(detTj )1/N(M(0)
n )ik. (28)

4. Algebra of (N + 1)-diagonal determinants and recurrence coefficient
renormalization (N = 1, 2, 4)

Let us consider a question about the renormalization [13, 19] of the recurrence coefficients
α(i)

(n)
l with the change of sampling ofN node points,l = 1, 2, . . . , N , from the set ofn

points,xn, of thex-axis subdivision. The most frequent cases in the applications areN = 2
(Schr̈odinger equation, electromagnetic wave equation, elasticity equation) andN = 4 (two
types of coupled waves, Bogoliubov, Dirac equations). So we represent their detailed
results. The generalization to any arbitraryN case is evident by induction.

We denote for a clearness the leading four coefficients by

α(i)
(m)

1 = α(i)m α(i)
(m)

2 = β(i)m α(i)
(m)

3 = γ (i)m α(i)
(m)

4 = δ(i)m. (29)

We note that they characterize alli-row elements of the transfer matrix, but we shall omit the
i-index in the coefficients where it is convenient. It is also convenient to introduce special
notations for the determinants of the(N + 1)-diagonal matrices ofn−m+ 1 dimensiality
in the right lower corner of (23), block1. ForN = 1, 2, 4 they are

Amn =

∣∣∣∣∣∣∣∣∣∣∣∣

αm 1
αm+1 1

αm+2 1
. . .

. . .

αn−1 1
αn

∣∣∣∣∣∣∣∣∣∣∣∣
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Bmn =

∣∣∣∣∣∣∣∣∣∣∣∣

αm 1
βm+1 αm+1 1

βm+2 αm+2 1
βm+3 αm+3 1

. . .
. . .

. . .

βn αn

∣∣∣∣∣∣∣∣∣∣∣∣

Dm
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αm 1
βm+1 αm+1 1
γm+2 βm+2 αm+2 1
δm+3 γm+3 βm+3 αm+3 1

δm+4 γm+4 βm+4 αm+4 1
. . .

. . .
. . .

. . .
. . .

δn γn βn αn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(30)

wherem < n. By extending the definition form > n with formal properties

Ann = Bnn = Dn
n = αn for m = n (31)

An+1
n = Bn+1

n = Dn+1
n = 1 for m = n+ 1 (32)

Amn = Bmn = Dm
n = 0 for m > n+ 1 (33)

we get an(N + 1)-diagonal determinant algebra.

4.1. The trivial caseN = 1

For

Mn = αnMn−1 =
n∏
i=1

αi (34)

the connection betweenMn andMm in two arbitrary pointsn,m(n > m) is

Mn = αnmMm (35)

αnm = Am+1
n =

n∏
i=m+1

αi. (36)

4.2. The caseN = 2

This is characterized by theBmn determinants and the matrix elements

(Mn)ik =

∣∣∣∣∣∣∣∣∣∣

(M1)ik δik
β2 α2 1

β3 α3 1
. . .

. . .
. . .

βn αn

∣∣∣∣∣∣∣∣∣∣
. (37)

By expandingBmn along the row withβr+1 we have

Bmn = Bmr B
r+1
n − Bmr−1βr+1B

r+2
n . (38)

In particular, along the first row(r = m)

Bmn = αmB
m+1
n − βm+1B

m+2
n (39)

which increases a superscript, and along the last row(r = n− 1)

Bmn = αnB
m
n−1 − βnB

m
n−2 (40)
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which decreases a subscript. From here with the help of (32)–(33) it is easy to verify for
r < m < n the following equalities,∣∣∣∣Brm Br+1

m

Brn Br+1
n

∣∣∣∣ = Bm+2
n

m+1∏
i=r+1

βi

∣∣∣∣Brs−2 Brs−1
Bls−2 Bls−1

∣∣∣∣ = Brl−2

s−1∏
i=l
βi . (41)

That is, forn > m > s > l > r∣∣∣∣Brm Blm
Brn Bln

∣∣∣∣ =
∣∣∣∣Brs−2 Brs−1
Bls−2 Bls−1

∣∣∣∣ ·
∣∣∣∣Bsm Bs+1

m

Bsn Bs+1
n

∣∣∣∣ · βs == Brl−2B
m+2
n

m+1∏
i=l
βi (42)

and, in addition, for anyBmn andn,m, p > l, s, r the equality takes place:∣∣∣∣∣ B
s
n Brn Bln

Bsm Brm Blm
Bsp Brp Blp

∣∣∣∣∣ = 0. (43)

By acting similarly with (37) we have

(Mn)ik = Br+1
n (Mr)ik − βr+1B

r+2
n (Mr−1)ik (44)

which expresses(Mn)ik via two arbitrary sequential terms onr andr−1 steps. In particular,
for r = 1, via the leading(M1)ik and(M0)ik = δik,

(Mn)ik = B2
n(M1)ik − β2B

3
nδik (45)

and forr = n− 1 it gives (21), i.e. via two previous terms,

(Mn)ik = αn(Mn−1)ik − βn(Mn−2)ik. (46)

We obtain the connection between(Mn)ik in three arbitrary pointsn,m, p by writing
out a set of three equations (44) with fixedr and its augmented determinant, and then with
the help of (39) get for anyn,m, p > l, s, r the equality of type (43):∣∣∣∣∣ (Mn)ik Brn Bln

(Mm)ik Brm Blm
(Mp)ik Brp Blp

∣∣∣∣∣ = 0. (47)

We supposen > m > p and give to (47) a form

(Mn)ik = αnmp(Mm)ik − βnmp(Mp)ik (48)

αnmp = B
p+2
n

B
p+2
m

βnmp = Bm+2
n

B
p+2
m

m+1∏
i=p+2

βi. (49)

By expanding the determinant on the left-hand side of (42), we may, if we wish, exclude
theβi product in the last formula:

βnmp = αnmpB
p+1
m − Bp+1

n . (50)

In particular, the recurrence formula for the transfer matrix elements acrosst = 1, 2, . . .
steps on pointsxn of the x-axis subdivision is

(Mn+2t )ik = α(t)(Mn+t )ik − β(t)(Mn)ik (51)

α(t) = Bn+2
n+2t

Bn+2
n+t

β(t) = Bn+2+t
n+2t

Bn+2
n+t

n+1+t∏
i=n+2

βi. (52)

The last of the derived expressions is the most interesting from the physical point of view,
because it describes the renormalization of the recurrent coefficientsα and β with non-
homogeneous (49) and homogeneous (52) rescaling.
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In a periodic system, if a step is chosen which is equal to a 1/t part of some period, i.e.
the transfer matrix on a periodMt = T = ∏t

n=1 Tn, and for one-step matricesTn+t = Tn,
then from (A.4) and (A.6) it follows that

Bn+2
n+t = Bn+2+t

n+2t

n+1+t∏
i=n+2

βi =
t∏

n=1

detTn = detT (53)

that is for a periodic system there is a transformation (52) with common coefficients for all
elementsMik (A.7):

α(t) = SpT = B2
2t

B2
t

β(t) = detT. (54)

It is possible to say that for a periodic system the renorming transformation (52) has
for the values

α̃(t) = α(t)

SpT
β̃(t) = β(t)

detT
(55)

the fixed pointα̃(t) = 1, β̃(t) = 1. Furthermore by passing, with the help of (28), to the
unimodular matrix with elements(M(0)

n )ik = (Mn)ik/(detT)n/2, in this case it is easy to see
thatβ(0)(t) = 1 and the determinantBmn for n > m− 2 is equal to the second-kind Chebyshev
polynomialUn−m+1(y), wherey = α(t)/[2(detT)1/2] as far as such polynomials are equal
[24, 25] to the determinants of tridiagonaln× n matrices,

Un(y) =

∣∣∣∣∣∣∣∣
2y 1
1 2y 1

. . .
. . .

. . .

1 2y

∣∣∣∣∣∣∣∣ (56)

and alsoU0 = 1, U−1 = 0. So, similarly to (45), we obtain from (51), for at-step period
the well known result of Abelés [3, 5, 20] for the transfer matrixMnt = Tn acrossn periods

Tn

(detT)n/2
= Un−1

(
α(t)

2(detT)1/2

)
T

(detT )1/2
− Un−2

(
α(t)

2(detT)1/2

)
I. (57)

The stability conditions require eigenvalues ofT (multiplicators [2]) to be situated on the
unit circle, i.e.λ = exp(iKa) whereK is the quasi-momentum anda is the period along
the x-axis. In the most frequently encountered case of a real potential and unimodular
transfer matrices,β(t) = detT = 1, from the characteristic equation one usually obtains the
following quasi-momentum dispersion law:

2 cosKa = α(t). (58)

The condition of spectral stability is|α(t)| 6 2. Our formula (54) allows us to find the
forbidden zones in the spectrum in accordance with the potential modulation and the numbers
of subperiods in the commensurate superlattices. Besides, it is convenient to chose the length
of steps and the numbert in accordance with the modulation character.

4.3. The case N=4

By operating in the above pattern we obtain the following results. First of all, aside from
the determinantsDm

n , it is now convenient to introduce the determinants of the matrices
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with a shift of diagonals ofDm
n on one step and on two steps to the right:

D̃m
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

βm αm 1
γm+1 βm+1 αm+1 1
δm+2 γm+2 βm+2 αm+2 1

δm+3 γm+3 βm+3 αm+3 1
. . .

. . .
. . .

. . .
. . .

δn−1 γn−1 βn−1 αn−1

δn γn βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(59)

˜̃
D
m

n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γm βm αm 1
δm+1 γm+1 βm+1 αm+1 1

δm+2 γm+2 βm+2 am+2 1
. . .

. . .
. . .

. . .
. . .

δn−2 γn−2 βn−2 αn−2

δn−1 γn−1 βn−1

δn γn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By expandingDm
n along ther + 1 row we get

Dm
n = Dm

r D
r+1
n +Dm

r−1(−βr+1D
r+2
n + γr+2D

r+3
n − δr+3D

r+4
n )

+Dm
r−2(γr+1D

r+2
n − δr+2D

r+3
n )−Dm

r−3δr+1D
r+2
n .

(60)

In particular, along the first row(r = m)

Dm
n = αmD

m+1
n − βm+1D

m+2
n + γm+2D

m+3
n − δm+3D

m+4
n (61)

which increases a superscript, and along the last row(r = n− 1)

Dm
n = αnD

m
n−1 − βnD

m
n−2 + γnD

m
n−3 − δnD

m
n−4 (62)

which decreases a subscript. From here and (31)–(33), as in the case ofN = 2, we obtain
for r < n < m < l < s∣∣∣∣∣∣∣
Dr
n Dr+1

n Dr+2
n Dr+3

n

Dr
m Dr+1

m Dr+2
m Dr+3

m

Dr
l Dr+1

l Dr+2
l Dr+3

l

Dr
s Dr+1

s Dr+2
s Dr+3

s

∣∣∣∣∣∣∣ =
∣∣∣∣∣D

n+2
m Dn+3

m Dn+4
m

Dn+2
l Dn+3

l Dn+4
l

Dn+2
s Dn+3

s Dn+4
s

∣∣∣∣∣ n+3∏
j=r+3

δj

= ˜̃
Dn+4
m+2

∣∣∣∣Dl+2
m Dl+3

m

Dl+2
s Dl+3

s

∣∣∣∣ n+3∏
j=r+3

δj = ˜̃
Dn+4
m+2D̃

m+3
l+1 D

l+2
s

n+3∏
j=r+3

δj (63)

and also the determinant of the fifth-order type of (43) is equal to zero, detDm
n = 0, the

elements of which,Dm
n , have the same subscripts in each row and superscripts in each

column.
By expanding (23) along the row, similarly to (44), we get the recurrence formula for

the element(Mn)ik via four sequential terms:

(Mn)ik = Dr+1
n (Mr)ik + (−βr+1D

r+2
n + γr+2D

r+3
n − δr+3D

r+4
n )(Mr−1)ik

+(γr+1D
r+2
n − δr+2D

r+3
n )(Mr−2)ik − δr+1D

r+2
n (Mr−3)ik. (64)
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By setting the augmented determinant of a set of five such equations, forl, m, n, s, p >

r, equal to zero we get∣∣∣∣∣∣∣∣∣
(Mn)ik Dr

n Dr+1
n Dr+2

n Dr+3
n

(Mm)ik Dr
m Dr+1

m Dr+2
m Dr+3

m

(Mp)ik Dr
p Dr+1

p Dr+2
p Dr+3

p

(Ml)ik Dr
l Dr+1

l Dr+2
l Dr+3

l

(Ms)ik Dr
s Dr+1

s Dr+2
s Dr+3

s

∣∣∣∣∣∣∣∣∣ = 0 (65)

i.e. by means of (63), forn > m > p > l > s, we have again the recurrence relations with
the renormalized coefficients

(Mn)ik = α(Mm)ik − β(Mp)ik + γ (Ml)ik − δ(Ms)ik (66)

α ≡ αnmpls = D
p+2
n

D
p+2
m

β ≡ βnmpls = D̃l+3
m+1D

m+2
n

D̃l+3
p+1D

p+2
m

γ ≡ γnmpls =
˜̃
Ds+4
p+2D̃

p+3
m+1D

m+2
n˜̃

Ds+4
l+2D̃

l+3
p+1D

p+2
m

δ ≡ δnmpls =
˜̃
Dl+4
p+2D̃

p+3
m+1D

m+2
n˜̃

Ds+4
l+2D̃

l+3
p+1D

p+2
m

l+3∏
j=s+4

δj .

(67)

For n − m = m − p = p − s = s − l = t this gives the recurrence formula acrosst
steps and also, if the system is periodic acrosst steps, thenTn+t = Tn and from (A.14) it
follows that

Dm+t
n+t = Dm

n D̃m+t
n+t = D̃m

n
˜̃
Dm+t
n+t = ˜̃

Dm
n

t∏
j=1

δj =
t∏

j=1

detTj = detT
(68)

whereT = ∏t
j=1 Tj is the transfer matrix on a period. Then the transformation (67) has the

common coefficients (A.14) for all(Mn)ik elements

α(t) = SpT = D2
2t

D2
t

β(t) = Sp̃T2 = D̃3
2t+1

D̃3
t+1

γ(t) = Sp̃T3 =
˜̃
D4

2t+2˜̃
D4
t+2

δ(t) = detT.

(69)

Here T̃2 is the second and̃T3 the third (of complementary minors) compound to theT
matrices ((96)below) [21–23], i.e. the transformation (67) acrosst steps has a fixed point
of the unit values of the parameters

α(t)

SpT
β(t)

Sp̃T2

γ(t)

Sp̃T3

δ(t)

detT
. (70)

Furthermore, with the help of (28), in this case (64) gives forr = 3 the following
generalization toN = 4 of Abeĺes formula (57) for a transfer matrixMnt = Mn

t = Tn across
n > 3 periods,

Tn

(detT)n/4
= Un−3(α̃, β̃, γ̃ )

T3

(detT)3/4
+

(−β̃Un−4(α̃,β̃, γ̃ )+ γ̃ Un−5(α̃,β̃, γ̃ )− Un−6(α̃,β̃, γ̃ ))
T2

(detT)1/2
+ (71)

(γ̃ Un−4(α̃,β̃, γ̃ )− Un−5(α̃,β̃, γ̃ ))
T

(detT)1/4
− Un−4(α̃,β̃, γ̃ )I
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in which

α̃ = SpT(0) = α(t)

(detT)1/4

β̃ = Sp̃T(0)2 = β(t)

(detT)1/2
γ̃ = Sp̃T(0)3 = γ(t)

(detT)3/4

(72)

andα(t) andβ(t) are also expressed with the help of (69) via the elements of the transfer
matrix on a period. Instead of Chebyshev polynomials in (71) we have polynomials of three
argumentsUn(x, y, z) defined by means of the determinants of five-diagonaln×n matrices

Un(x, y, z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1
y x 1
z y x 1
1 z y x 1

1 z y x 1
. . .

. . .
. . .

. . .
. . .

1 z y x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(73)

and alsoU0 = 1, Un = 0 for n < 0. Formula (71) is simplified in the periodic system with
the unimodular one-step transfer matrix

Tn = Un−3(α, β, γ )T3 + (−βUn−4(α, β, γ )+ γUn−5(α, β, γ )− Un−6(α, β, γ ))T2

+(γUn−4(α, β, γ )− Un−5(α, β, γ ))T − Un−4(α, β, γ )I. (74)

It should be underlined that in (71) and (74) it is not required to solve preliminarily
the characteristic equation of the fourth order for the determination of the eigenvalues ofT,
unlike the results [3, 5, 20] established on the Sylvester interpolation formula.

When we analyse the stability conditions and find allowed zones in the coupled wave
spectrum we may come across more possible combinations. The eigenvaluesλ of matrix T
are not necessarily pairwise complex conjugative and some pairs of them may leave the unit
circle after mutual collision. In the simplest and widespread case of the unimodular transfer
matrix δ(t) = detT = 1 with four roots of the formλ = exp(iKa), from the characteristic
equations ((94) and (96) below) it is not hard to write out the universal equation analogous
to (58) for the quasi-momentum dispersion law

2 cos 2Ka − (α(t) + γ(t)) cosKa − i(α(t) − γ(t)) sinKa + β(t) = 0 (75)

where it is convenient to find the coefficients from (69), and alsoα(t) = γ ∗
(t) andβ(t) is real

as a consequence of the Viète theorem. Equation (75) describes the magnification of zone
quantity, their possible intersection and repulsion near the degeneracy points in accordance
with the potential and coupling parameter space modulation.

5. The arbitrary N case

We generalize the above results by introducing under consideration, as in (30), fromm to
n steps the determinants1m

n of the (N + 1)-diagonal(n−m+ 1)-order matrices, standing
in the right lower corner block1 of (23), wherem > N , with the notation (21) for the
recursion coefficients. Then the generalization of (60) for these determinants is(m 6 r < n)

1m
n =

N−1∑
p=0

1m
r−p

( N−p∑
l=1

(−1)l+p+1α
(r+l)
l+p 1

r+l+1
n

)
(76)
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with

1n
n = α

(n)

1 1n+1
n = 1 1m

n = 0 for m > n+ 1.

We may derive from here the formulae of reduction of minor order of type (63) and
also prove equality to zero of the(N +1)-order determinant, composed of the elements1m

n

by rule (43), i.e. they have the same subscriptsni in rows and superscriptmj in columns
(i, j = 1, . . . , N + 1):

det1
mj
ni = 0. (77)

The transfer matrix viaN sequential terms is

(Mn)ik =
N−1∑
p=0

( N−p∑
l=1

(−1)l+p+1α
(r+l)
l+p 1

r+l+1
n

)
(Mr−p)ik. (78)

In the case of a periodic system with the one-step transfer matrixT on a period the
coefficients are common for all elementsMik, so we have the generalization of formula (71)
(n > N − 1)

Tn

(detT)n/N
=

N−1∑
p=0

( N−p∑
l=1

(−1)l+p+1α̃l+pU
(N)

n−N−l+1(α̃j )

)
TN−p−1

(detT)(N−p−1)/N
(79)

α̃l+p = αl+p
(detT)(l+p)/N

αl+p ≡ α
(N+l−1)
l+p = sl+p = Sp̃Tl+p

wheresj are the coefficients of theT matrix characteristic polynomial (94), SpT̃j are the
sums of thej th order principal minors ofT (96) which are equal to traces of thej th
compound toT matrices T̃j , in particular Sp̃TN = T̃N = detT [21–23]; furthermore,
U(N)
n = U(N)

n (α̃1, . . . , α̃N−1) is the polynomial ofN − 1 variables generalizing (73), i.e. it
is equal to the determinant of the(N + 1)-diagonaln × n matrix of N − 1 arguments̃αj ,
each of which stands on its own diagonal downwards from the main diagonal between two
identity diagonals:

U(N)
n (α1, . . . , αN−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 1
α2 α1 1
α3 α2 α1 1
. . . . . . . . . . . . . . . . . . . . . . . . .

αN−1 αN−2 . . . α1 1
1 αN−1 αN−2 . . . α1 1

1 αN−1 αN−2 . . . α1 1
. . .

. . .
. . . . . .

. . .
. . .

1 αN−1 αN−2 . . . α1 1
1 αN−1 αN−2 . . . α1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and U

(N)

0 = 1 U(N)
n = 0 for n < 0. (80)

The last result (79) looks simpler in the case of the unimodularT matrix

Tn =
N−1∑
p=0

(N−p∑
l=1

(−1)l+p+1αl+pU
(N)

n−N−l+1

)
TN−p−1. (81)
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The polynomialsU(N)
n = U(N)

n (α1, . . . , αN−1) obey the recurrent relations resembling
expression (21),

U(N)
n =

N∑
l=1

(−1)l+1αlU
(N)
n−l αN = 1

U
(N)

0 = 1 U(N)
n = 0 for n < 0

(82)

and satisfy the admissible differential equations

∂U(N)
n

∂α1
= (−1)l

∂U
(N)
n+l

∂α1+l
l = 1, 2, . . . , N − 2 (83)

N∑
l=0

αl
∂NU(N)

n

∂αN−l
1 ∂αl2

+N
∂N−1U(N)

n

∂αN−2
1 ∂α2

= 0 (84)

whereα0 = αN = 1. By differentiation of (83) with respect to differentαl we may get the
relations between the higher derivations of polynomialsU(N)

n and from (84) the differential
equations of lower power that we shall not write down here.

We shall now find the renormalization of the coefficientsαl under changing of the
step. Corresponding relations will have, similarly to (67) and (69), the form of the ratio of
products of the determinants, received from1m

n by shifting diagonals to the right.
Let us introduce the notation(1l)

m
n for the determinant of the matrix received from the

matrix of the determinant1m
n ≡ (11)

m
n by shifting of the diagonals onl − 1 to the right;

for example, forN = 4 in (59) this will be(D1)
m
n = Dm

n , (D2)
m
n = D̃m

n , (D3)
m
n = ˜̃

Dm
n and

so on. It is easy to notice that forl = N such a matrix is an upper triangular and in its
j -row on the main diagonal isα(j)N , hence

(1N)
m
n =

n∏
j=m

α
(j)

N . (85)

In this notation for an arbitraryN the generalization of (66) is

(Mn(N+1) )ik =
N∑
l=1

(−1)l+1αl(Mn(N−l+1) )ik (86)

and the generalization of (67) is the following renormalizing relation

αl =
(1l)

n(N−l)+l+1
n(N−l+2)+l−1

(1l)
n(N−l)+l+1
n(N−l+1)+l−1

· Fl (87)

whereFl = 1 for l = 1, and forN > l > 1

Fl =
l−1∏
p=1

(1p)
n(N−p+1)+p+1
n(N−p+2)+p−1

(1p)
n(N−p)+p+1
n(N−p+1)+p−1

. (88)

For l = N in (87) the fraction, standing beforeFl , is equal to

(1N)
n(0)+N+1
n2+N−1

(1N)
n(0)+N+1
n1+N−1

=
∏n2+N−1
j=n(0)+N+1 α

(j)

N∏n1+N−1
j=n(0)+N+1 α

(j)

N

=
n2+N−1∏
j=n1+N

α
(j)

N (89)

wheren(0) is the number of any initial noden(0) < n(N−l+1); one can see that its dependence
in (89) is cancelled.
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In a periodic system acrosst steps by generalization of (68) we have

(1p)
n(l)
n(m) = (1p)

n(l+1)
n(m+1) Fl = 1

n(N−l+1) − n(N−l) = t n(N−l+2) − n(N−l) = 2t
(90)

and so on. The generalization of formulae (69) in this case will be that for all matrix
elements the common coefficients are

αl(t) = (1l)
l+1
2t+l−1

(1l)
l+1
t+l−1

. (91)

In particular, for the last coefficient atl = N from (85) it follows, obviously, that

αN(t) =
t∏

j=1

α
(j)

N =
t∏

j=1

detTj = detT (92)

whereT is the transfer matrix across the period. In such a periodic system the transformation
(87) acrosst steps has a fixed point in which all the parametersαl(t)/Sp̃Tl are equal to unit,
where Sp̃Tl is the trace of thelth compound to theT matrix.

6. Recurrence coefficients in a periodical system

In the periodic multilayered systems there exists at hand the Sylvester (Abelés [20]) formula
of the polynomial interpolation for the transfer matrixTn on n periods via the lowestN −1
powers of the one-stepT matrix on a period

Tn =
N∑
r=1

(λr)
n

∏
s 6=r (λs I − T)∏
s 6=r (λs − λr)

(93)

where λs are the eigenvalues of the one-step matrixT which are the solutions of the
characteristic equation

det(λI − T) =
N∑
l=0

(−1)lslλ
N−l = 0 s0 = 1 (94)

that is unsolvable analytically, in general, as theN -order algebraic equation. ForN = 2
the solution of the quadratic equation (94) permitted Abelés to derive formula (57) i.e. to
express the coefficients beforeT andI in (93) via the Chebyshev polynomials of the second
kind. In the case of coupled waves, whenN > 2, the solution of equation (94) sometimes is
considered as an obstruction to be overcome [3], which demands one, for the employment of
(93), to develop approximate methods of findingλs or to also explore approximate methods
of the perturbation theory by weak coupling of waves.

Formulae (71) and (79), deduced above, and generalizing the Abelés formula (57), show
that the computation of the eigenvalues ofT is unnecessary. The point is that the coefficients
sl of the characteristic equation (94) are equal to the symmetric functions of its roots (the
Vi ète theorem) and, on the other hand, they may be determined if we know the traces of the
powers toN − 1 of the T matrix [22] over which the coefficients before any powers ofT
in (93) are expressed. Really, according to the known Cayley–Hamilton theorem [21–23],
every square matrix satisfies its own characteristic equation, so we have

TN =
N∑
l=1

(−1)l+1slTN−l (95)
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where the coefficientssl are equal [21-23] to the sums of the principal minors ofT of lth
order, that are the traces of thelth compound to theT matrices,̃Tl :

s1 = SpT =
N∑
i=1

Tii s2 = Sp̃T2 =
N∑

i,j=1

T iijj . . . sN = Sp̃TN = detT. (96)

By comparing (95) and (21) we see thatsl = αl . Then we pass over from (95) to (93)
by successive recurrence multiplying byT and make sure that the renormalized recursion
coefficients in formulae (79) are determined by the traces (96) of the compound to theT
matrices forming the polynomialsU(N)

n = U(N)
n (α1, . . . , αN−1) that generalize the second-

kind Chebyshev polynomials.
The amount and order of the minors in the sums (96) extend abruptly with increasing

N . In order to determine the coefficientsαl = sl instead of an explicit summarizing
(96), as a matter of convenience we introduce, in addition, the polynomialsT (N)n =
T (N)n (α1, . . . , αN−1), generalizing the first-kind Chebyshev polynomials [24], as the
determinants of(N + 1)-diagonaln× n matrices of the form

T (N)n (α1, . . . , αN−1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
N
α1 1

2α2
N

α1 1
3α3
N

α2 α1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(N−1)αN−1

N
αN−2 . . . α1 1

1 αN−1 αN−2 . . . α1 1
1 αN−1 αN−2 . . . α1 1

. . .
. . .

. . . . . .
. . .

. . .

1 αN−1 αN−2 . . . α1 1
1 αN−1 αN−2 . . . α1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (97)

We see by expanding (97) along the last row that, asU(N)
n in (82), the polynomialsT (N)n

obey the recurrent relations

T (N)n =
N∑
l=1

(−1)l+1αlT
(N)
n−l (98)

whereαN = 1 and the leadingN − 1 term we found explicitly by (97). By expanding (97)
along the first column we see for ourselves the validity of the relations

T (N)n = 1

N

N∑
l=1

(−1)l+1lαlU
(N)
n−l . (99)

For N = 2 this gives the known formulae [24] for the ChebyshevTn(y) ≡ T (2)n , Un(y) ≡
U(2)
n polynomials withy = α1/2:

Tn(y) = 2yTn−1(y)− Tn−2(y) T0(y) = 1 T1(y) = y

Tn(y) = yUn−1(y)− Un−2(y). (100)

By evaluation of trace (79) we verify the satisfiability of the equality

Sp(Tn) = NT (N)n (101)

and then we found the coefficientsαl = sl from the chain of equations (101) taken
successively forn = 1, 2, . . . , N − 1. For example, with the help of (97), the leading
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three terms give

α1 = SpT

α2 = 1
2[(α1)

2 − Sp(T2)] (102)

α3 = 1
3[Sp(T3)− (α1)

3 + 3α1α2]

and so on.

7. Conclusion

We emphasize that the recursion scheme examined in this work does not require periodicity
of the system in any way. It is sufficient to know how to solve the one-step problem for
the initial set of differential equations (1) or (15) for the transfer matrix. Such a problem
may often be found to be simple enough, for example, with piecewise constant potentials
like Kronig–Penny or with delta-function potentials. The arbitrary smooth potential may
always be replaced by the piecewise constant one with a rather small step and pre-assigned
accuracy.

Obtained rigorous analytical relations permit us, as usual, to compose the programs of
numerical algorithms [23] more rationally and to understand their results more deeply.

It should be noted in conclusion that from the physical and mathematical points of view
the applicability of many of the derived formulae is not restricted to the linear equation
with variable coefficients (1) or (4). It is wider, as far as the dynamical mapping method
and therefore, based on (19), the algebraic recurrence scheme is applicable to some other
classes of differential and difference equations. First of all, we can apply them to the
set of linear equations that describes an important case of a given system ofN coupled
plane wavesuj = Aj exp(ikjx), j = 1, . . . , N , which pass through the piecewise constant
multilayered medium with strong space dispersion in layers (Bloch electrons, short wave
phonons, magnons and so on),

Lj

(
E,

d

dx

)
uj +

∑
l 6=j

1lj (E)ul = 0 (103)

whereE is the spectral parameter,1lj the piecewise constant parameters of wave coupling
and the linear operatorsLj in layers are not the rational algebraic functions of d/dx as in
(4) and so forth.

Moreover, even for some nonlinear equations, in the composition of numerical
algorithms for their solution, we may formally use one part of our results (formulae for
the elements of matrix products, powers, etc), but may not use the other part (in particular,
the recurrence coefficientsα on the interval ofN+1 recursion points, will be dependent on
the function values in all the previous steps). These questions require further investigation.
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Appendix. Computation of the recursion coefficients

Here we shall derive the formulae expressing the recursion coefficientsα(i)
(n)
l for the

elements(Mn)ik of the transfer matrix in (21), (27) and (28) via the elements of the
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one-step matrix(Tn)jl on the recursion interval fromn − N + 1 to n steps. First, we
examine the simplest case ofN = 2 and carry out the operations described between
formulae (20) and (21) directly. The transfer matricesMn and Tn have four elements
(Mn)ik and(Tn)ik (i, k = 1, 2). We write out relations (20) for both elements(Mn)ik and
(Mn)jk (j 6= i) of the k-column,

(Mn)ik = (Tn)ii(Mn−1)ik + (Tn)ij (Mn−1)jk

(Mn)jk = (Tn)jj (Mn−1)jk + (Tn)ji(Mn−1)ik
(A.1)

and add two analogous equations for the previous step, i.e. with the exchangen −→ n− 1,
so we get four equations on three unknowns(Mn)jk, (Mn−1)jk, (Mn−2)jk. Their elimination
is equivalent to equating the augmented determinant to zero:∣∣∣∣∣∣∣

(Tn)ii(Mn−1)ik − (Mn)ik 0 (Tn)ij 0
(Tn)ji(Mn−1)ik 0 (Tn)jj −1

(Tn−1)ii(Mn−2)ik − (Mn−1)ik (Tn−1)ij 0 0
(Tn−1)ji(Mn−2)ik (Tn−1)jj −1 0

∣∣∣∣∣∣∣ = 0. (A.2)

By expanding along the first column, we get the binomial recurrence relations for the
elements(Mn)ik whose coefficients are independent of thek-column index, i.e. they are
identical for the elements(Mn)11 and (Mn)12 of the first row and for the elements(Mn)21

and (Mn)22 of the second row of the transfer matrix. We write them in the form of (21)
with the proposition that(Tn−1)ij 6= 0 (see the text concerning the possibility ofTn elements
vanishing) in notation (29)

(Mn)1k = α(1)n(Mn−1)1k − β(1)n(Mn−2)1k k = 1, 2 (A.3)

α(1)n = (Tn)11 + (Tn−1)22
(Tn)12

(Tn−1)12
β(1)n = (Tn)12

(Tn−1)12
detTn−1 (A.4)

(Mn)2k = α(2)n(Mn−1)2k − β(2)n(Mn−2)2k k = 1, 2 (A.5)

α(2)n = (Tn)22 + (Tn−1)11
(Tn)21

(Tn−1)21
β(2)n = (Tn)21

(Tn−1)21
detTn−1. (A.6)

For the periodic system if a step is equal to the period then(Tn)lj = (Tn−1)lj ≡ Tlj and
the coefficients are also independent of thei-row index:

α = α(1)n = α(2)n = SpT β = β(1)n = β(2)n = detT. (A.7)

Relations (A.4), (A.6) and (A.7) are of wide use in the theory of wave propagation in
disordered media and in superlattices [10, 12–15].

With a rise of matrix orderN the order of the set of equations (20) containing the
element(Mn)ik on recursion steps increases abruptly asN2. The expanding of the augmented
determinant ofN2 − 1 order for these systems is a good exercise in computer algebra. It
is possible to show that the result may be expressed in terms of the elements of all the
compounds to theTn matrices on the recursion steps. But we may proceed more simply.
The point is that as far as the recursion coefficientsα(i)nl in (21) only depend on thei
index of the transfer matrix row and are common for all columnsk, we may find them as
the solutions of an appropriate system ofN linear non-homogeneous equations. To derive
them we substitute the expressions

Mj =
( j∏
l=n−N+1

Tl

)
Mn−N j = n−N + 1, . . . , n (A.8)

into (21), that is all matricesMj included in (21) we express with the help of (19) via the
matrix farthest on the right,Mn−N . Then we replace this initial matrixMn−N by the unit
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matrix I since the coefficientsα(i)(n)l are independent of the initial matrix in the recursion
interval. So (21) gives the equations( n∏
j=n−N+1

Tj

)
ik

=
N−1∑
l=1

(−1)l+1α(i)nl

( n−l∏
j=n−N+1

Tj

)
ik

+ (−1)N+1α(i)
(n)
N δik. (A.9)

Under the fixed row indexi we take from (A.9) the equations,k = 1, 2, . . . , N , which
give us the closed set of requiredN linear non-homogeneous equations for coefficients
α(i)

(n)
l which we find by the Cramer’s rule as the ratio of known determinants. For example,

whenN = 3 we have from (A.9) in notation (29) the following set of equations,

(TnTn−1Tn−2)i1 = α(i)n(Tn−1Tn−2)i1 − β(i)n(Tn−2)i1 + γ (i)nδi1

(TnTn−1Tn−2)i2 = α(i)n(Tn−1Tn−2)i2 − β(i)n(Tn−2)i2 + γ (i)nδi2 (A.10)

(TnTn−1Tn−2)i3 = α(i)n(Tn−1Tn−2)i3 − β(i)n(Tn−2)i3 + γ (i)nδi3

and so on. Hence we may use for the computation of the recursion coefficients from
n−N + 1 to n steps the following general formula,

α(i)nl = (−1)l+1Dl(i)

D0(i)
(A.11)

where the determinant of system (A.9) is

D0(i) =

∣∣∣∣∣∣∣∣∣
δi1 δi2 . . . δiN

(Tn−N+1)i1 (Tn−N+1)i2 . . . (Tn−N+1)iN
(Tn−N+2Tn−N+1)i1 (Tn−N+2Tn−N+1)i2 . . . (Tn−N+2Tn−N+1)iN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
∏n−1
j=n−N+1Tj )i1 (

∏n−1
j=n−N+1Tj )i2 . . . (

∏n−1
j=n−N+1Tj )iN

∣∣∣∣∣∣∣∣∣ (A.12)

andDl(i) is found fromD0(i) by replacing its(N − l + 1)-row elements by the elements( n∏
j=n−N+1

Tj

)
ik

k = 1, 2, . . . , N. (A.13)

For the periodic system with step equal to the period the one-step transfer matrices are
identical,Tj = T, so from (A.11) and the Cayley–Hamilton theorem it immediately follows
that, independently of thei-row index,

αl = sl (A.14)

wheresl are the coefficients of theT matrix characteristic polynomial (94) and are given
by formulae (96), i.e. they are equal to the traces of thelth compound to theT matrices.
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